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● Research applications
● High-volume sensors
● Complex kinematics
● Lots of computation power
● Ideal network connectivity
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● Multi-robot system
● Small processors
● Battery power
● Unreliable network 

connectivity
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+ ROS usability

less time 
spent here

means more time to 
spend here
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ROSCon 2015 demos

Quality of Service demo for 
lossy networks using ROS 2

Efficient intra-process 
communication using ROS 2

Bridge communication 
between ROS 1 and ROS 2

ROS 2 on “bare-metal” 
microcontrollers

Real-time safe code 
using ROS 2
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https://github.com/ros2/ros2/wiki/Tutorials

https://github.com/ros2/ros2/wiki/Tutorials
https://github.com/ros2/ros2/wiki/Tutorials


What’s new this year
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Changes since ROSCon 2015: user-facing
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Windows feature 
parity (alpha 2)

Partial port of tf2 
including the core 
libraries (alpha 3)

Python client library 
(alpha 4)

32-bit and 64-bit ARM added 
as experimentally supported 

platforms (alpha 5)

Node “wait for service” 
functionality (alpha 6)

Fast RTPS added as a 
supported middleware 

(alpha 3)

Turtlebot demo using 
ported code from 
ROS 1 (alpha 7)



● Support for C messages (as opposed to 
C++) (alphas 4, 5, 7)

● Improved support for large messages 
(images) in both Connext and 
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl) 
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)
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User code

ROS client library API

DDS impl A DDS impl B . . .

19

or or



Architectural overview

User code

ROS client library API

DDS impl A DDS impl B . . .

20

or or

DDS 
agnostic

ROS 
agnostic

ROS middleware API



Architectural overview

User code

ROS client library API

21

DDS 
agnostic

ROS 
agnostic

ROS middleware API

. . .or orDDS impl A DDS impl B



Architectural overview

User code

ROS client library API

. . .
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or or

ROS middleware API

DDS impl A DDS impl B

RMW impl BRMW impl A . . .

DDS 
agnostic

ROS 
agnostic



Architectural overview

User code

ROS client library API

. . .
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or or

ROS middleware API

Fast RTPS DDS impl B

RMW impl BFast RTPS 
RMW impl . . .

DDS 
agnostic

ROS 
agnostic



Supported vendors until October 2016

User code

ROS client library API

ROS middleware API

RTI 
Connext

eProsima 
Fast RTPS

PrismTech
OpenSplice

Connext 
Dynamic
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Development pausedDefault



Why eProsima’s Fast RTPS?

● Changed the license June 2016:

○ LGPL -> Apache 2.0

● Code on GitHub

○ https://github.com/eProsima/Fast-RTPS

● Responsive to issues and pull requests

● Added features needed to support ROS 2

○ Fragmentation of large messages

○ Graph change notifications

● CMake buildsystem

26

https://github.com/eProsima/Fast-RTPS
https://github.com/eProsima/Fast-RTPS


● Support for C messages (as opposed to 
C++) (alphas 4, 5, 7)
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ROS client libraries
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talker.py listener.cpp



ROS client libraries
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talker.py listener.cpp

C++ ROS 
client library

Python ROS 
client library



ROS client libraries

User Code

ROS middleware interface
(rmw)

DDS vendor
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rclcpp rclpy



ROS client libraries

User Code

ROS middleware interface
(rmw)

DDS vendor

Console
logging

Names & 
namespaces

Time

Threading model

Parameters

Intra-process 
communication
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rclcpp rclpy
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rclcpp rclpy



ROS client libraries

User Code

rclcpp

Console
logging

Names & 
namespaces Time

Threading model

Parameters

Intra-process 
communication
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rclpy

ROS middleware interface
(rmw)

DDS vendor

ROS client library (rcl)



ROS client libraries

node.py

rclpy

node.cpp

rclcpp

node.cs

rclcs . . .

rmw

DDS vendor

rcl

34

node.java

rcljava

https://github.com/firesurfer/rclcs

https://github.com/esteve/ros2_java

https://github.com/firesurfer/rclcs
https://github.com/firesurfer/rclcs
https://github.com/esteve/ros2_java
https://github.com/esteve/ros2_java


Tracing talker-listener
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publish subscribe/chatter listener.cpptalker.py

Consider this talker-listener example:



Tracing talker-listener
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publish subscribe listener.cpptalker.py /chatter

rclpy.init()

node = rclpy.create_node('talker')

chatter_pub = node.create_publisher(

  std_msgs.msg.String, 'chatter')

msg = std_msgs.msg.String()

i = 1

while True:

    msg.data = 'Hello World: {0}'.format(i)

    i += 1

    print('Publishing: "{0}"'.format(msg.data))

    chatter_pub.publish(msg)



Tracing talker-listener
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publish subscribe listener.cpp/chatter

rclpy.init()

node = rclpy.create_node('talker')

chatter_pub = node.create_publisher(

  std_msgs.msg.String, 'chatter')

msg = std_msgs.msg.String()

i = 1

while True:

    msg.data = 'Hello World: {0}'.format(i)

    i += 1

    print('Publishing: "{0}"'.format(msg.data))

    chatter_pub.publish(msg)

rclpy

talker.py



Tracing talker-listener
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publish subscribe/chatter listener.cpp
static PyObject *

rclpy_publish(PyObject * Py_UNUSED(self), PyObject * args) {

  PyObject * pypublisher;  // populated from args

  PyObject * pymsg;        // populated from args

  // ...

  void * raw_ros_message = convert_from_py(pymsg);

  rcl_ret_t ret = rcl_publish(publisher, raw_ros_message);

  if (ret != RCL_RET_OK) {

    // error handling

  }

  // ...

}

rclpy

talker.py



Tracing talker-listener
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publish subscribe/chatter listener.cpp
static PyObject *

rclpy_publish(PyObject * Py_UNUSED(self), PyObject * args) {

  PyObject * pypublisher;  // populated from args

  PyObject * pymsg;        // populated from args

  // ...

  void * raw_ros_message = convert_from_py(pymsg);

  rcl_ret_t ret = rcl_publish(publisher, raw_ros_message);

  if (ret != RCL_RET_OK) {

    // error handling

  }

  // ...

}

rclpy

talker.py

rcl
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publish subscribe/chatter listener.cpp
rcl_ret_t

rcl_publish(

  const rcl_publisher_t * publisher,

  const void * ros_message)

{

  // ...

  ret = rmw_publish(publisher->impl->rmw_handle, ros_message);

  if (ret != RMW_RET_OK) {

    // error handling

  }

  return RCL_RET_OK;

}

rclpy

talker.py

rcl



Tracing talker-listener
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publish subscribe/chatter

rclpy

rcl

rmw

listener.cpp
rcl_ret_t

rcl_publish(

  const rcl_publisher_t * publisher,

  const void * ros_message)

{

  // ...

  ret = rmw_publish(publisher->impl->rmw_handle, ros_message);

  if (ret != RMW_RET_OK) {

    // error handling

  }

  return RCL_RET_OK;

}

talker.py



Tracing talker-listener
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publish subscribe/chatter

rmw_ret_t
rmw_publish(
    const rmw_publisher_t * publisher,
    const void * ros_message);

rclpy

rcl

rmw

listener.cpptalker.py



Tracing talker-listener
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publish subscribe/chatter

rclpy

rcl

rmw impl
rmw

listener.cpptalker.py

DDS Vendor DDS VendorIPC



Tracing talker-listener
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publish subscribe/chatter

rclpy

rcl

Fast RTPS

rmw_fastrtps_cpp

rmw

listener.cpp

Fast RTPSIPC

talker.py
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publish subscribe listener.cpp/chatter

rclpy

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_publish(

  const rmw_publisher_t * publisher, const void * ros_message)

{

  // ...

  eprosima::fastcdr::FastBuffer buffer;

  eprosima::fastcdr::Cdr ser(buffer);

  PublisherImpl * info = (PublisherImpl *)publisher->data;

  if(_serialize_ros_message(ros_message, ser, /* ... */)) {

      if(info->publisher_->write(&ser))  // Fast RTPS publisher

          return RMW_RET_OK;

      else

          // ... publish error handling

  }

  else

    // ... serialize error handling

}

talker.py
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publish subscribe listener.cpp/chatter

rclpy

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_publish(

  const rmw_publisher_t * publisher, const void * ros_message)

{

  // ...

  eprosima::fastcdr::FastBuffer buffer;

  eprosima::fastcdr::Cdr ser(buffer);

  PublisherImpl * info = (PublisherImpl *)publisher->data;

  if(_serialize_ros_message(ros_message, ser, /* ... */)) {

      if(info->publisher_->write(&ser))  // Fast RTPS publisher

          return RMW_RET_OK;

      else

          // ... publish error handling

  }

  else

    // ... serialize error handling

}

talker.py
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publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw
“Hello World”

listener.cpptalker.py

Fast RTPS Fast RTPSIPC



Tracing talker-listener
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rmw_publish()

publish subscribe/chatter listener.cpp

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

Fast RTPS Fast RTPS

rmw
“Hello World”

IPC

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

  std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

int

main(int argc, char * argv[]) {

  rclcpp::init(argc, argv);

  auto node = rclcpp::Node::make_shared("listener");

  auto sub = node->create_subscription<std_msgs::msg::String>(

    "chatter", chatter_callback, rmw_qos_profile_default);

  rclcpp::spin(node);

}
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rmw_publish()

publish

Fast RTPS Fast RTPSIPC

subscribe/chatter

“Hello World”

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

listener.cpp

rmw

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

  std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

int

main(int argc, char * argv[]) {

  rclcpp::init(argc, argv);

  auto node = rclcpp::Node::make_shared("listener");

  auto sub = node->create_subscription<std_msgs::msg::String>(

    "chatter", chatter_callback, rmw_qos_profile_default);

  rclcpp::spin(node);

}

rclcpp



Tracing talker-listener
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rmw_publish()

publish subscribe/chatter

rclpy

talker.py

“Hello World”

IPC

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

Does 
subscription 
have data?

execute_subscription()Yes

wait for “work”
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publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw
Sub

sc
rip

tio
n h

as
 da

ta

listener.cpptalker.py

“Hello World”

IPCFast RTPS Fast RTPS
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rmw_publish()

publish subscribe/chatter

rclpy

“Hello World”

IPC

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

Does 
subscription 
have data?

execute_subscription()Yes

wait for “work”
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rmw_publish()

publish subscribe/chatter

“Hello World”

IPC

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

wait for “work”

Does 
subscription 
have data?

execute_subscription()Yes

void execute_subscription(/* ... */ subscription)

{

  std::shared_ptr<void> message =

    subscription->create_message();

  auto ret = rcl_take(

    subscription->get_subscription_handle(),

    message.get(), /* ... */);

  if (ret == RCL_RET_OK) {

    subscription->handle_message(message, /* ... */);

  } else { /* error handling */ }

}
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rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

“Hello World”

IPC

Fast RTPSrmw_fastrtps_cpp

Fast RTPS Fast RTPS

listener.cpp

rmw

rclcpp

rclcpp::spin()

wait for “work”

Does 
subscription 
have data?

execute_subscription()Yes

rcl

void execute_subscription(/* ... */ subscription)

{

  std::shared_ptr<void> message =

    subscription->create_message();

  auto ret = rcl_take(

    subscription->get_subscription_handle(),

    message.get(), /* ... */);

  if (ret == RCL_RET_OK) {

    subscription->handle_message(message, /* ... */);

  } else { /* error handling */ }

}



Tracing talker-listener

“Hello World”

IPC

55

rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS Fast RTPS

Fast RTPSrmw_fastrtps_cpp

listener.cpp

rmw

rcl_ret_t

rcl_take(

  const rcl_subscription_t * subscription,

  void * ros_message, /* ... */)

{

  // ...

  bool taken = false;

  rmw_ret_t ret = rmw_take(

    subscription->impl->rmw_handle, ros_message, &taken);

  if (ret != RMW_RET_OK) {

    // ... error handling

  }

  if (!taken) {

    return RCL_RET_SUBSCRIPTION_TAKE_FAILED;

  }

  return RCL_RET_OK;

}

rclcpp

rcl
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rmw_publish()

publish

“Hello World”

IPC

subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS

listener.cpp

rmw_fastrtps_cpp

Fast RTPS Fast RTPS

rmw

rcl_ret_t

rcl_take(

  const rcl_subscription_t * subscription,

  void * ros_message, /* ... */)

{

  // ...

  bool taken = false;

  rmw_ret_t ret = rmw_take(

    subscription->impl->rmw_handle, ros_message, &taken);

  if (ret != RMW_RET_OK) {

    // ... error handling

  }

  if (!taken) {

    return RCL_RET_SUBSCRIPTION_TAKE_FAILED;

  }

  return RCL_RET_OK;

}

rclcpp

rcl

rmw
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“Hello World”

IPC

publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_take(

  const rmw_subscription_t * subscription,

  void * ros_message,

  bool * taken);

listener.cpptalker.py

rclcpp

rcl

rmw

Fast RTPS Fast RTPS
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rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS
“Hello World”

IPC

rmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

rclcpp

rcl

listener.cpp

rmw_take()

rmw_ret_t

rmw_take(

  const rmw_subscription_t * subscription,

  void * ros_message, bool * taken)

{

  *taken = false;

  SubscriptionImpl * info = (SubscriptionImpl *)subscription->data;

  eprosima::fastcdr::FastBuffer buffer;

  SampleInfo_t sinfo;

  if(info->subscriber_->takeNextData(&buffer, &sinfo)) {

    if(sinfo.sampleKind == ALIVE) {  // actually contains data

        _deserialize_ros_message(&buffer, ros_message, /* ... */);

        *taken = true;

    }

  }

}

rmw_fastrtps_cpp

rmw
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rmw_publish()

publish subscribe/chatter

“Hello World”

IPC

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rclcpp

rcl

Fast RTPS Fast RTPS

rmw_take()

listener.cpp
rmw_ret_t

rmw_take(

  const rmw_subscription_t * subscription,

  void * ros_message, bool * taken)

{

  *taken = false;

  SubscriptionImpl * info = (SubscriptionImpl *)subscription->data;

  eprosima::fastcdr::FastBuffer buffer;

  SampleInfo_t sinfo;

  if(info->subscriber_->takeNextData(&buffer, &sinfo)) {

    if(sinfo.sampleKind == ALIVE) {  // actually contains data

        _deserialize_ros_message(&buffer, ros_message, /* ... */);

        *taken = true;

    }

  }

}

rmw_fastrtps_cpp

rmw
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publish subscribe/chatter

rclpy

talker.py

rcl

rmw_fastrtps_cpp

rmw

rclcpp

rcl

rmw_fastrtps_cpp

rmw

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

  std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

listener.cpp

“Hello World”

IPCFast RTPS Fast RTPS



● Support for C messages (as opposed to 
C++) (alphas 4, 5, 7)

● Improved support for large messages 
(images) in both Connext and 
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl) 
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● Graph events (alpha 7?)
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Porting of Turtlebot to ROS 2
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● Minimum viable demo (https://github.com/ros2/turtlebot2_demo)

○ Kobuki driver

○ Astra driver

○ Joystick driver

○ Follower node

https://orbbec3d.com/ http://kobuki.yujinrobot.com/

https://github.com/ros2/turtlebot2_demo
https://orbbec3d.com/
https://orbbec3d.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
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● Kobuki driver

○ Used existing non-ROS dependencies

○ Replaced ROS 1 wrapper with ROS 2 wrapper

● Astra driver

○ Forked and ported existing ROS 1 driver to ROS 2

● Joystick driver

○ Wrote a simple joystick program from scratch (no porting)

● Follower node

○ Forked and ported existing ROS 1 node

● ROS 1 ⇔ ROS 2 bridge for visualization
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● ROS 1 “shim” (https://github.com/codebot/ros1_shim)

○ Some things (like the astra driver) needed some deep 

features (e.g. custom serialization)

○ Hard to find the right strata in the interfaces to shim

https://github.com/codebot/ros1_shim
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● catment (https://github.com/ros2/ros2/wiki/catment)

○ Find ways to modify each to make them more similar

■ In order to minimize conversion effort

○ Mixing catkin (ROS 1) and ament (ROS 2)

■ To avoid converting unless necessary

○ Non-homogeneous workspace

■ Building catkin and ament packages at the same time

○ Ideal: one build tool for both

■ ament vs catkin not unlike catkin vs plain cmake

https://github.com/ros2/ros2/wiki/catment


● catment continued...

○ Conceptual details to work out:

■ setup.*sh files in root of workspace

● Currently required by catkin

● Optional for ament

■ devel-space 

● ament uses “symlink install” instead

■ Avoiding confusion in documentation

○ Make catkin more like ament? (and vice versa?)

Porting Experiments
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● Beta 1 - End of the Year
○ Composition

■ may use pluginlib and class_loader from ROS 1 for C++
○ QoS benchmarks

■ for example: unreliable comms, illustrated by wifi out-and-back
○ Design documents
○ Tutorials and examples
○ "rostopic list", "rostopic echo", and friends
○ Bridging services to/from ROS1 (in addition to topics)

● Nice to have by Beta 1:
○ Console logging

■ think “rosconsole”
○ Orchestration

■ think “roslaunch + verification & dynamic behavior”



Pointers
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● ROS 2 wiki: https://github.com/ros2/ros2/wiki
○ Installation instructions
○ Tutorials
○ How to contribute
○ Current status
○ Roadmap

● Developer docs (work in progress):
○ https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst

○ Architecture overview
○ Links to API docs

● Design documents: http://design.ros2.org/
○ Articles about various subjects
○ On going discussions on the issue tracker: 

https://github.com/ros2/design 

https://github.com/ros2/ros2/wiki
https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst
https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst
http://design.ros2.org/
https://github.com/ros2/design
https://github.com/ros2/design
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https://goo.gl/oCHR7H



“Hour Glass” Pattern

{client libraries}

rmw

{DDS vendor}
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API size

LOC

{rmw impl}

rcl impl

rcl



“Hour Glass” Pattern - C++ with Fast RTPS

rclcpp

rmw

Fast RTPS
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API size

LOC

rmw_fastrtps_cpp

rcl impl

rcl



“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext
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API size

LOC

rmw_connext_cpp

rcl impl

rcl



“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext
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API size

LOC

rmw_connext_cpp

rcl impl

rcl

Common



“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext
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API size

LOC

rmw_connext_cpp

rcl impl

rcl

Vendor 
Specific


