
ROS 2 Update

Deanna Hood, William Woodall
October 8, 2016
ROSCon 2016 Seoul

https://goo.gl/oCHR7H

Contents

https://goo.gl/oCHR7H

ROS 2 overview

Overview of changes in the last year

Details of select features

Experience porting Turtlebot

Roadmap

2

ROS as we know it

3

4

● Research applications
● High-volume sensors
● Complex kinematics
● Lots of computation power
● Ideal network connectivity

5

● Multi-robot system
● Small processors
● Battery power
● Unreliable network

connectivity

Goals of ROS 2

6

ROS 2

7

ROS 2

8

+ ROS usability

less time
spent here

means more time to
spend here

Architectural overview

User code

ROS client library API

9

Architectural overview

User code

ROS client library API

DDS implementation

= discovery + serialization + transport

10

ROSCon 2015 demos

Quality of Service demo for
lossy networks using ROS 2

Efficient intra-process
communication using ROS 2

Bridge communication
between ROS 1 and ROS 2

ROS 2 on “bare-metal”
microcontrollers

Real-time safe code
using ROS 2

11

https://github.com/ros2/ros2/wiki/Tutorials

https://github.com/ros2/ros2/wiki/Tutorials
https://github.com/ros2/ros2/wiki/Tutorials

What’s new this year

12

Changes since ROSCon 2015: user-facing

13

Windows feature
parity (alpha 2)

Partial port of tf2
including the core
libraries (alpha 3)

Python client library
(alpha 4)

32-bit and 64-bit ARM added
as experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Fast RTPS added as a
supported middleware

(alpha 3)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

14

Windows feature
parity (alpha 2)

Python client library
(alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Fast RTPS supported as
middleware (alpha 3)

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

15

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Windows feature
parity (alpha 2)

Python client library
(alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Fast RTPS supported as
middleware (alpha 3)

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

16

Windows feature
parity (alpha 2)

Python client library
(alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Fast RTPS supported as
middleware (alpha 3)

Partial port of core tf2
libraries (alpha 3)

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

17

Windows feature
parity (alpha 2)

Python client
library (alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Fast RTPS supported as
middleware (alpha 3)

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

18

Windows feature
parity (alpha 2)

Python client library
(alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Fast RTPS supported
as middleware

(alpha 3)

Architectural overview

User code

ROS client library API

DDS impl A DDS impl B . . .

19

or or

Architectural overview

User code

ROS client library API

DDS impl A DDS impl B . . .

20

or or

DDS
agnostic

ROS
agnostic

ROS middleware API

Architectural overview

User code

ROS client library API

21

DDS
agnostic

ROS
agnostic

ROS middleware API

. . .or orDDS impl A DDS impl B

Architectural overview

User code

ROS client library API

. . .

22

or or

ROS middleware API

DDS impl A DDS impl B

RMW impl BRMW impl A . . .

DDS
agnostic

ROS
agnostic

Architectural overview

User code

ROS client library API

. . .

23

or or

ROS middleware API

Fast RTPS DDS impl B

RMW impl BFast RTPS
RMW impl . . .

DDS
agnostic

ROS
agnostic

Supported vendors until October 2016

User code

ROS client library API

ROS middleware API

RTI
Connext

eProsima
Fast RTPS

PrismTech
OpenSplice

Connext
Dynamic

24

Supported vendors since October 2016

User code

ROS client library API

ROS middleware API

RTI
Connext

eProsima
Fast RTPS

PrismTech
OpenSplice

Connext
Dynamic

25

Development pausedDefault

Why eProsima’s Fast RTPS?

● Changed the license June 2016:

○ LGPL -> Apache 2.0

● Code on GitHub

○ https://github.com/eProsima/Fast-RTPS

● Responsive to issues and pull requests

● Added features needed to support ROS 2

○ Fragmentation of large messages

○ Graph change notifications

● CMake buildsystem

26

https://github.com/eProsima/Fast-RTPS
https://github.com/eProsima/Fast-RTPS

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

27

Windows feature
parity (alpha 2)

Python client
library (alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo using
ported code from
ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Fast RTPS supported as
middleware (alpha 3)

ROS client libraries

28

talker.py listener.cpp

ROS client libraries

29

talker.py listener.cpp

C++ ROS
client library

Python ROS
client library

ROS client libraries

User Code

ROS middleware interface
(rmw)

DDS vendor

30

rclcpp rclpy

ROS client libraries

User Code

ROS middleware interface
(rmw)

DDS vendor

Console
logging

Names &
namespaces

Time

Threading model

Parameters

Intra-process
communication

31

rclcpp rclpy

ROS client libraries

User Code

ROS middleware interface
(rmw)

DDS vendor

Console
logging

Names &
namespaces

Time

Threading model

Parameters

Intra-process
communication

32

rclcpp rclpy

ROS client libraries

User Code

rclcpp

Console
logging

Names &
namespaces Time

Threading model

Parameters

Intra-process
communication

33

rclpy

ROS middleware interface
(rmw)

DDS vendor

ROS client library (rcl)

ROS client libraries

node.py

rclpy

node.cpp

rclcpp

node.cs

rclcs . . .

rmw

DDS vendor

rcl

34

node.java

rcljava

https://github.com/firesurfer/rclcs

https://github.com/esteve/ros2_java

https://github.com/firesurfer/rclcs
https://github.com/firesurfer/rclcs
https://github.com/esteve/ros2_java
https://github.com/esteve/ros2_java

Tracing talker-listener

35

publish subscribe/chatter listener.cpptalker.py

Consider this talker-listener example:

Tracing talker-listener

36

publish subscribe listener.cpptalker.py /chatter

rclpy.init()

node = rclpy.create_node('talker')

chatter_pub = node.create_publisher(

 std_msgs.msg.String, 'chatter')

msg = std_msgs.msg.String()

i = 1

while True:

 msg.data = 'Hello World: {0}'.format(i)

 i += 1

 print('Publishing: "{0}"'.format(msg.data))

 chatter_pub.publish(msg)

Tracing talker-listener

37

publish subscribe listener.cpp/chatter

rclpy.init()

node = rclpy.create_node('talker')

chatter_pub = node.create_publisher(

 std_msgs.msg.String, 'chatter')

msg = std_msgs.msg.String()

i = 1

while True:

 msg.data = 'Hello World: {0}'.format(i)

 i += 1

 print('Publishing: "{0}"'.format(msg.data))

 chatter_pub.publish(msg)

rclpy

talker.py

Tracing talker-listener

38

publish subscribe/chatter listener.cpp
static PyObject *

rclpy_publish(PyObject * Py_UNUSED(self), PyObject * args) {

 PyObject * pypublisher; // populated from args

 PyObject * pymsg; // populated from args

 // ...

 void * raw_ros_message = convert_from_py(pymsg);

 rcl_ret_t ret = rcl_publish(publisher, raw_ros_message);

 if (ret != RCL_RET_OK) {

 // error handling

 }

 // ...

}

rclpy

talker.py

Tracing talker-listener

39

publish subscribe/chatter listener.cpp
static PyObject *

rclpy_publish(PyObject * Py_UNUSED(self), PyObject * args) {

 PyObject * pypublisher; // populated from args

 PyObject * pymsg; // populated from args

 // ...

 void * raw_ros_message = convert_from_py(pymsg);

 rcl_ret_t ret = rcl_publish(publisher, raw_ros_message);

 if (ret != RCL_RET_OK) {

 // error handling

 }

 // ...

}

rclpy

talker.py

rcl

Tracing talker-listener

40

publish subscribe/chatter listener.cpp
rcl_ret_t

rcl_publish(

 const rcl_publisher_t * publisher,

 const void * ros_message)

{

 // ...

 ret = rmw_publish(publisher->impl->rmw_handle, ros_message);

 if (ret != RMW_RET_OK) {

 // error handling

 }

 return RCL_RET_OK;

}

rclpy

talker.py

rcl

Tracing talker-listener

41

publish subscribe/chatter

rclpy

rcl

rmw

listener.cpp
rcl_ret_t

rcl_publish(

 const rcl_publisher_t * publisher,

 const void * ros_message)

{

 // ...

 ret = rmw_publish(publisher->impl->rmw_handle, ros_message);

 if (ret != RMW_RET_OK) {

 // error handling

 }

 return RCL_RET_OK;

}

talker.py

Tracing talker-listener

42

publish subscribe/chatter

rmw_ret_t
rmw_publish(
 const rmw_publisher_t * publisher,
 const void * ros_message);

rclpy

rcl

rmw

listener.cpptalker.py

Tracing talker-listener

43

publish subscribe/chatter

rclpy

rcl

rmw impl
rmw

listener.cpptalker.py

DDS Vendor DDS VendorIPC

Tracing talker-listener

44

publish subscribe/chatter

rclpy

rcl

Fast RTPS

rmw_fastrtps_cpp

rmw

listener.cpp

Fast RTPSIPC

talker.py

Tracing talker-listener

45

publish subscribe listener.cpp/chatter

rclpy

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_publish(

 const rmw_publisher_t * publisher, const void * ros_message)

{

 // ...

 eprosima::fastcdr::FastBuffer buffer;

 eprosima::fastcdr::Cdr ser(buffer);

 PublisherImpl * info = (PublisherImpl *)publisher->data;

 if(_serialize_ros_message(ros_message, ser, /* ... */)) {

 if(info->publisher_->write(&ser)) // Fast RTPS publisher

 return RMW_RET_OK;

 else

 // ... publish error handling

 }

 else

 // ... serialize error handling

}

talker.py

Tracing talker-listener

46

publish subscribe listener.cpp/chatter

rclpy

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_publish(

 const rmw_publisher_t * publisher, const void * ros_message)

{

 // ...

 eprosima::fastcdr::FastBuffer buffer;

 eprosima::fastcdr::Cdr ser(buffer);

 PublisherImpl * info = (PublisherImpl *)publisher->data;

 if(_serialize_ros_message(ros_message, ser, /* ... */)) {

 if(info->publisher_->write(&ser)) // Fast RTPS publisher

 return RMW_RET_OK;

 else

 // ... publish error handling

 }

 else

 // ... serialize error handling

}

talker.py

Tracing talker-listener

47

publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw
“Hello World”

listener.cpptalker.py

Fast RTPS Fast RTPSIPC

Tracing talker-listener

48

rmw_publish()

publish subscribe/chatter listener.cpp

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

Fast RTPS Fast RTPS

rmw
“Hello World”

IPC

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

 std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

int

main(int argc, char * argv[]) {

 rclcpp::init(argc, argv);

 auto node = rclcpp::Node::make_shared("listener");

 auto sub = node->create_subscription<std_msgs::msg::String>(

 "chatter", chatter_callback, rmw_qos_profile_default);

 rclcpp::spin(node);

}

Tracing talker-listener

49

rmw_publish()

publish

Fast RTPS Fast RTPSIPC

subscribe/chatter

“Hello World”

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

listener.cpp

rmw

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

 std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

int

main(int argc, char * argv[]) {

 rclcpp::init(argc, argv);

 auto node = rclcpp::Node::make_shared("listener");

 auto sub = node->create_subscription<std_msgs::msg::String>(

 "chatter", chatter_callback, rmw_qos_profile_default);

 rclcpp::spin(node);

}

rclcpp

Tracing talker-listener

50

rmw_publish()

publish subscribe/chatter

rclpy

talker.py

“Hello World”

IPC

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

Does
subscription
have data?

execute_subscription()Yes

wait for “work”

Tracing talker-listener

51

publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw
Sub

sc
rip

tio
n h

as
 da

ta

listener.cpptalker.py

“Hello World”

IPCFast RTPS Fast RTPS

Tracing talker-listener

52

rmw_publish()

publish subscribe/chatter

rclpy

“Hello World”

IPC

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

Does
subscription
have data?

execute_subscription()Yes

wait for “work”

Tracing talker-listener

53

rmw_publish()

publish subscribe/chatter

“Hello World”

IPC

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

listener.cpp

rclcpp

rclcpp::spin()

wait for “work”

Does
subscription
have data?

execute_subscription()Yes

void execute_subscription(/* ... */ subscription)

{

 std::shared_ptr<void> message =

 subscription->create_message();

 auto ret = rcl_take(

 subscription->get_subscription_handle(),

 message.get(), /* ... */);

 if (ret == RCL_RET_OK) {

 subscription->handle_message(message, /* ... */);

 } else { /* error handling */ }

}

Tracing talker-listener

54

rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

“Hello World”

IPC

Fast RTPSrmw_fastrtps_cpp

Fast RTPS Fast RTPS

listener.cpp

rmw

rclcpp

rclcpp::spin()

wait for “work”

Does
subscription
have data?

execute_subscription()Yes

rcl

void execute_subscription(/* ... */ subscription)

{

 std::shared_ptr<void> message =

 subscription->create_message();

 auto ret = rcl_take(

 subscription->get_subscription_handle(),

 message.get(), /* ... */);

 if (ret == RCL_RET_OK) {

 subscription->handle_message(message, /* ... */);

 } else { /* error handling */ }

}

Tracing talker-listener

“Hello World”

IPC

55

rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS Fast RTPS

Fast RTPSrmw_fastrtps_cpp

listener.cpp

rmw

rcl_ret_t

rcl_take(

 const rcl_subscription_t * subscription,

 void * ros_message, /* ... */)

{

 // ...

 bool taken = false;

 rmw_ret_t ret = rmw_take(

 subscription->impl->rmw_handle, ros_message, &taken);

 if (ret != RMW_RET_OK) {

 // ... error handling

 }

 if (!taken) {

 return RCL_RET_SUBSCRIPTION_TAKE_FAILED;

 }

 return RCL_RET_OK;

}

rclcpp

rcl

Tracing talker-listener

56

rmw_publish()

publish

“Hello World”

IPC

subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS

listener.cpp

rmw_fastrtps_cpp

Fast RTPS Fast RTPS

rmw

rcl_ret_t

rcl_take(

 const rcl_subscription_t * subscription,

 void * ros_message, /* ... */)

{

 // ...

 bool taken = false;

 rmw_ret_t ret = rmw_take(

 subscription->impl->rmw_handle, ros_message, &taken);

 if (ret != RMW_RET_OK) {

 // ... error handling

 }

 if (!taken) {

 return RCL_RET_SUBSCRIPTION_TAKE_FAILED;

 }

 return RCL_RET_OK;

}

rclcpp

rcl

rmw

Tracing talker-listener

57

“Hello World”

IPC

publish subscribe/chatter

rclpy

rcl

rmw_fastrtps_cpp

rmw

rmw_ret_t

rmw_take(

 const rmw_subscription_t * subscription,

 void * ros_message,

 bool * taken);

listener.cpptalker.py

rclcpp

rcl

rmw

Fast RTPS Fast RTPS

Tracing talker-listener

58

rmw_publish()

publish subscribe/chatter

rclpy

talker.py

rcl

Fast RTPS
“Hello World”

IPC

rmw_fastrtps_cpp

rmw

Fast RTPS Fast RTPS

rclcpp

rcl

listener.cpp

rmw_take()

rmw_ret_t

rmw_take(

 const rmw_subscription_t * subscription,

 void * ros_message, bool * taken)

{

 *taken = false;

 SubscriptionImpl * info = (SubscriptionImpl *)subscription->data;

 eprosima::fastcdr::FastBuffer buffer;

 SampleInfo_t sinfo;

 if(info->subscriber_->takeNextData(&buffer, &sinfo)) {

 if(sinfo.sampleKind == ALIVE) { // actually contains data

 _deserialize_ros_message(&buffer, ros_message, /* ... */);

 *taken = true;

 }

 }

}

rmw_fastrtps_cpp

rmw

Tracing talker-listener

59

rmw_publish()

publish subscribe/chatter

“Hello World”

IPC

rclpy

talker.py

rcl

Fast RTPSrmw_fastrtps_cpp

rmw

rclcpp

rcl

Fast RTPS Fast RTPS

rmw_take()

listener.cpp
rmw_ret_t

rmw_take(

 const rmw_subscription_t * subscription,

 void * ros_message, bool * taken)

{

 *taken = false;

 SubscriptionImpl * info = (SubscriptionImpl *)subscription->data;

 eprosima::fastcdr::FastBuffer buffer;

 SampleInfo_t sinfo;

 if(info->subscriber_->takeNextData(&buffer, &sinfo)) {

 if(sinfo.sampleKind == ALIVE) { // actually contains data

 _deserialize_ros_message(&buffer, ros_message, /* ... */);

 *taken = true;

 }

 }

}

rmw_fastrtps_cpp

rmw

Tracing talker-listener

60

publish subscribe/chatter

rclpy

talker.py

rcl

rmw_fastrtps_cpp

rmw

rclcpp

rcl

rmw_fastrtps_cpp

rmw

void

chatter_callback(const std_msgs::msg::String::SharedPtr msg) {

 std::cout << "I heard: [" << msg->data << "]" << std::endl;

}

listener.cpp

“Hello World”

IPCFast RTPS Fast RTPS

● Support for C messages (as opposed to
C++) (alphas 4, 5, 7)

● Improved support for large messages
(images) in both Connext and
Fast-RTPS (alpha 6, alpha 7)

● ROS Client Library implementation (rcl)
(from alpha 3, services from alpha 5)

● Refactored rclcpp to use rcl (alpha 6)

● Graph events (alpha 7?)

Changes since ROSCon 2015

61

Support for C messages (as
opposed to C++) (alphas 4, 5, 7)

Improved support for large
messages (images) with Connext
and Fast RTPS (alpha 6, alpha 7)

ROS graph
events (alpha 6)

Refactored C++
client library to
use rcl (alpha 6)

ROS Client Library
implementation (rcl) (from
alpha 3, services alpha 5)

Windows feature
parity (alpha 2)

Python client library
(alpha 4)

32- and 64-bit ARM
experimentally supported

platforms (alpha 5)

Node “wait for service”
functionality (alpha 6)

Turtlebot demo
using ported code

from ROS 1 (alpha 7)

Partial port of core tf2
libraries (alpha 3)

Fast RTPS supported as
middleware (alpha 3)

Porting of Turtlebot to ROS 2

62

● Minimum viable demo (https://github.com/ros2/turtlebot2_demo)

○ Kobuki driver

○ Astra driver

○ Joystick driver

○ Follower node

https://orbbec3d.com/ http://kobuki.yujinrobot.com/

https://github.com/ros2/turtlebot2_demo
https://orbbec3d.com/
https://orbbec3d.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/

Porting of Turtlebot to ROS 2

63

● Kobuki driver

○ Used existing non-ROS dependencies

○ Replaced ROS 1 wrapper with ROS 2 wrapper

● Astra driver

○ Forked and ported existing ROS 1 driver to ROS 2

● Joystick driver

○ Wrote a simple joystick program from scratch (no porting)

● Follower node

○ Forked and ported existing ROS 1 node

● ROS 1 ⇔ ROS 2 bridge for visualization

Porting Experiments

64

● ROS 1 “shim” (https://github.com/codebot/ros1_shim)

○ Some things (like the astra driver) needed some deep

features (e.g. custom serialization)

○ Hard to find the right strata in the interfaces to shim

https://github.com/codebot/ros1_shim

Porting Experiments

65

● catment (https://github.com/ros2/ros2/wiki/catment)

○ Find ways to modify each to make them more similar

■ In order to minimize conversion effort

○ Mixing catkin (ROS 1) and ament (ROS 2)

■ To avoid converting unless necessary

○ Non-homogeneous workspace

■ Building catkin and ament packages at the same time

○ Ideal: one build tool for both

■ ament vs catkin not unlike catkin vs plain cmake

https://github.com/ros2/ros2/wiki/catment

● catment continued...

○ Conceptual details to work out:

■ setup.*sh files in root of workspace

● Currently required by catkin

● Optional for ament

■ devel-space

● ament uses “symlink install” instead

■ Avoiding confusion in documentation

○ Make catkin more like ament? (and vice versa?)

Porting Experiments

66

Roadmap

67

● Beta 1 - End of the Year
○ Composition

■ may use pluginlib and class_loader from ROS 1 for C++
○ QoS benchmarks

■ for example: unreliable comms, illustrated by wifi out-and-back
○ Design documents
○ Tutorials and examples
○ "rostopic list", "rostopic echo", and friends
○ Bridging services to/from ROS1 (in addition to topics)

● Nice to have by Beta 1:
○ Console logging

■ think “rosconsole”
○ Orchestration

■ think “roslaunch + verification & dynamic behavior”

Pointers

68

● ROS 2 wiki: https://github.com/ros2/ros2/wiki
○ Installation instructions
○ Tutorials
○ How to contribute
○ Current status
○ Roadmap

● Developer docs (work in progress):
○ https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst

○ Architecture overview
○ Links to API docs

● Design documents: http://design.ros2.org/
○ Articles about various subjects
○ On going discussions on the issue tracker:

https://github.com/ros2/design

https://github.com/ros2/ros2/wiki
https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst
https://github.com/ros2/ros_core_documentation/blob/master/source/developer_overview.rst
http://design.ros2.org/
https://github.com/ros2/design
https://github.com/ros2/design

Questions

69

https://goo.gl/oCHR7H

“Hour Glass” Pattern

{client libraries}

rmw

{DDS vendor}

70

API size

LOC

{rmw impl}

rcl impl

rcl

“Hour Glass” Pattern - C++ with Fast RTPS

rclcpp

rmw

Fast RTPS

71

API size

LOC

rmw_fastrtps_cpp

rcl impl

rcl

“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext

72

API size

LOC

rmw_connext_cpp

rcl impl

rcl

“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext

73

API size

LOC

rmw_connext_cpp

rcl impl

rcl

Common

“Hour Glass” Pattern - Python with RTI Connext

rclpy

rmw

RTI Connext

74

API size

LOC

rmw_connext_cpp

rcl impl

rcl

Vendor
Specific

